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static network analysis

given network G = (V, E)
e centrality measures (degree-based, geometric, etc.)
® assortativity, transitivity, reciprocity
e distributions (degrees, distances, etc.)
e random walks on networks
e differences relative to configuration model
® community structure
® generative models

® etc.




static network analysis
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temporal network analysis

idea |:

empirical network sequence

time-stamped interactions: ¢ = (2, 7, ¢




temporal network analysis

idea |:

empirical network sequence

time-stamped interactions:
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temporal network analysis

idea |:
given network sequence G; = (V, E})
e compute statistics for each “snapshot” in sequence
e makes time series of scalar or vector values
X = L1y L2, X3y...,XT
e apply standard time series analysis tools
* autocorrelation (periodicities)
e change-point detection, non-stationarity
® covariance of features

® etc.




temporal network analysis

idea 2:
edges have durations e = (i, j,ts, At)
e durations of telephone calls

* time spent together

® etc.




temporal network analysis

idea 2:
edges have durations e = (i, j,ts, At)

e durations of telephone calls
* time spent together
* etc.

discretize time and reduce to idea |




temporal network analysis

idea 2:

edges have durations e = (¢, j,ts, At




dynamic proximity network

e MIT Reality Mining Project
e |00 mobile phones, 2 groups
e scan area with bluetooth

® every 5 minutes

for 12 months
(~100,000 minutes of data) — =

e record proximate devices (range: 5m)

e convert to dynamic proximity network o

(assume phone = person || nowaa [
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paper reference:

Persistence and periodicity in a dynamic proximity network*

Aaron Clauset’* and Nathan Eagle'

http://realitycommons.media.mit.edu
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proximity inference rule

proximities are time-stamped (¢, j, 1)
we want to infer durations (i, j, ts, At)
PrOXimitieS are nOiS)’ [some edges unobserved]

high-resolution temporal sampling [every 5 mins]

rule:

e define tolerance 7;if gap less than 7, assume continuous
proximity
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single day of proximities
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single day of proximities
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single day of proximities

Tuesday, 19 Oct 2004

more connections

15



single day of proximities

Tuesday, 19 Oct 2004
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single day of proximities
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single day of proximities

very few connections
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timing is everything?

how long do edges last?
how does structure vary over time!
how stable is a local neighborhood?

how does discrete time impact measures!?
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edge persistence

how long do edges last?
measure durations Pr(At)

20



edge persistence

how long do edges last?
measure durations Pr(At)
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* changes at many 8 |
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network dynamics

how does structure vary over time?
vary aggregation window for snapshots

compute mean degree over time
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network dynamics

how does structure vary over time?
vary aggregation window for snapshots

compute mean degree over time
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network dynamics

how does structure vary over time?
vary aggregation window for snapshots

compute mean degree over time
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network dynamics

how stable are local neighborhoods?
vary aggregation window for snapshots

compute adjacency correlation over time

ZzEN(j) A(fE)A(y)
€ (y)
\/ZzEN(]) A Z'LEN(Q) A

for two adjacency matrices A(®), AW)

measures similarity among neighbors observed In
erther network

average overlap = mean value (7y)
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network dynamics

how stable are local neighborhoods?

vary aggregation window for snapshots

compute adjacency correlation over time

* one week of October

* highly consistent
neighborhnoods

* dally / weekly periodicity

* aggregation time matters
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network dynamics

how does discrete time impact measures?
vary aggregation window for snapshots

compute summary statistics
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network dynamics

how does discrete time impact measures?
vary aggregation window for snapshots

compute summary statistics
0.6
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* choose a time scale =
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0 4 8 12 16 20 24 28 32 36 40 44 48
sampling frequency, A (hours)

28



network dynamics

how to choose aggregation time?

recall highly periodic dynamics
compute autocorrelation function on network measures

29



network dynamics

how to choose aggregation time?
recall highly periodic dynamics

compute autocorrelation function on network measures

—=— mean degree
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—A— adjacency correlation
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network dynamics

how to choose aggregation time?

recall highly periodic dynamics

use frequency spectrum to choose sampling rate

* periodicity at [,2,3
samples per day

* Nyquist rate
At >~ 4 hours

degree (k)pat = 2.24
triangles <C>nat — 0.084
adj. corr. (Y)nat = 0.88
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other ideas

temporal “reachability” and continuous-time methods
different parts evolving at different rates

generative models?

densification dynamics!?

temporal anomalies

etc.
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