TEMPORAL (DYNAMIC) NETWORKS

Lecture 20 19 November 2013 CSCI 5352, Network Analysis and Models

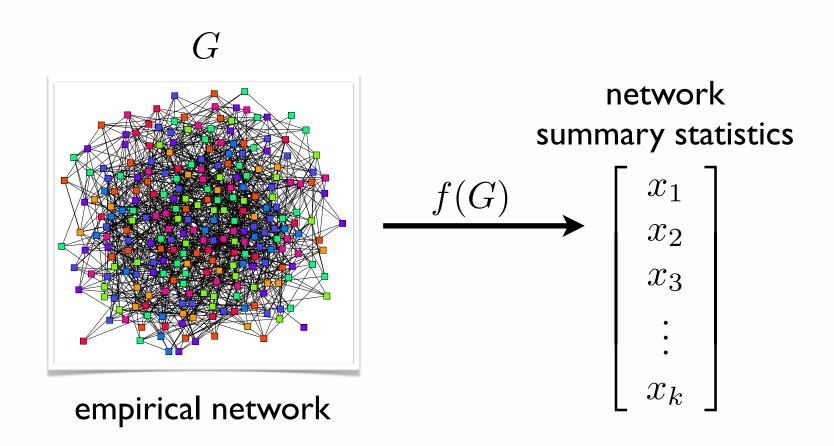
Prof. Aaron Clauset University of Colorado, Boulder

static network analysis

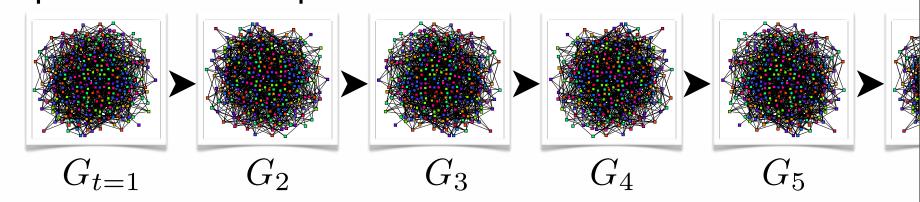
given network G = (V, E)

- centrality measures (degree-based, geometric, etc.)
- assortativity, transitivity, reciprocity
- distributions (degrees, distances, etc.)
- random walks on networks
- differences relative to configuration model
- community structure
- generative models
- etc.

static network analysis



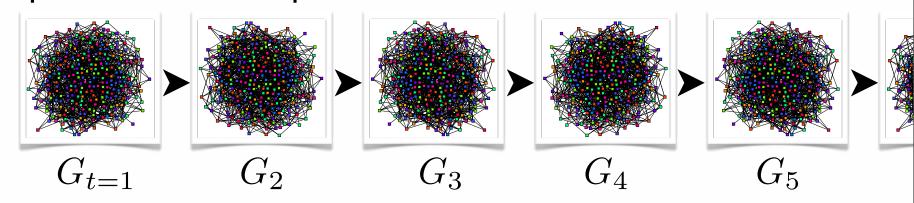
idea 1: empirical network sequence



time-stamped interactions: e = (i, j, t)

idea I:

empirical network sequence



time-stamped interactions: e = (i, j, t)

idea I:

given network sequence $G_t = (V, E_t)$

- compute statistics for each "snapshot" in sequence
- makes time series of scalar or vector values

$$\vec{x} = x_1, x_2, x_3, \dots, x_T$$

- apply standard time series analysis tools
 - autocorrelation (periodicities)
 - change-point detection, non-stationarity
 - covariance of features
 - etc.

idea 2:

edges have durations $e = (i, j, t_s, \Delta t)$

- durations of telephone calls
- time spent together
- etc.

idea 2:

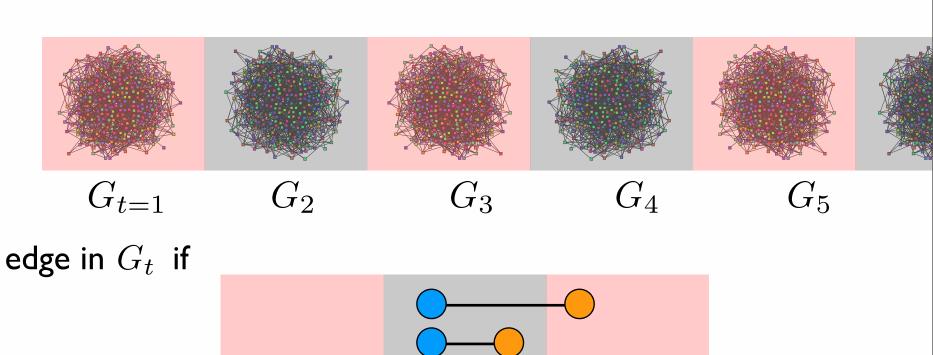
edges have durations $e = (i, j, t_s, \Delta t)$

- durations of telephone calls
- time spent together
- etc.

discretize time and reduce to idea I

idea 2: $\mbox{edges have durations} \ \ e = (i,j,t_s,\Delta t)$

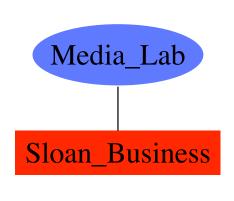
t-1



t+1

dynamic proximity network

- MIT Reality Mining Project
- 100 mobile phones, 2 groups
- scan area with bluetooth
- every 5 minutes
 for 12 months
 (~100,000 minutes of data)
- record proximate devices (range: 5m)
- convert to dynamic proximity network
 (assume phone = person

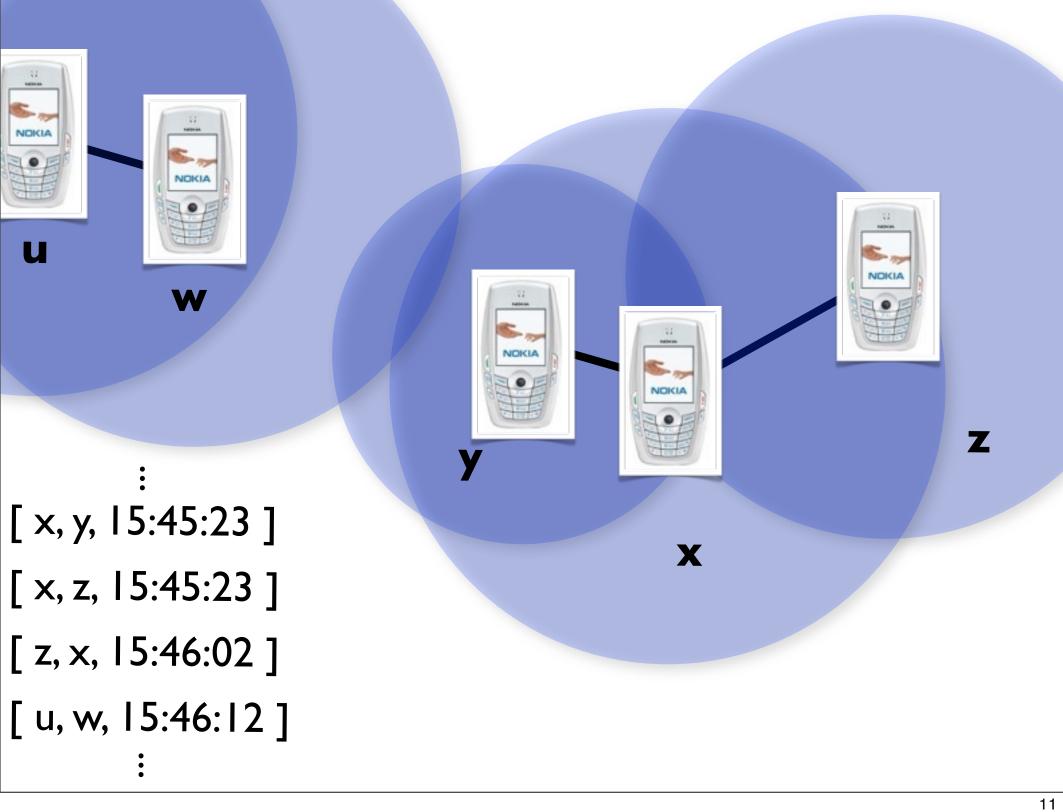


paper reference:

Persistence and periodicity in a dynamic proximity network*

Aaron Clauset^{‡,*} and Nathan Eagle[†]

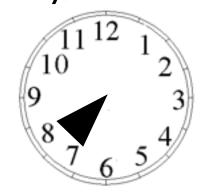
http://realitycommons.media.mit.edu

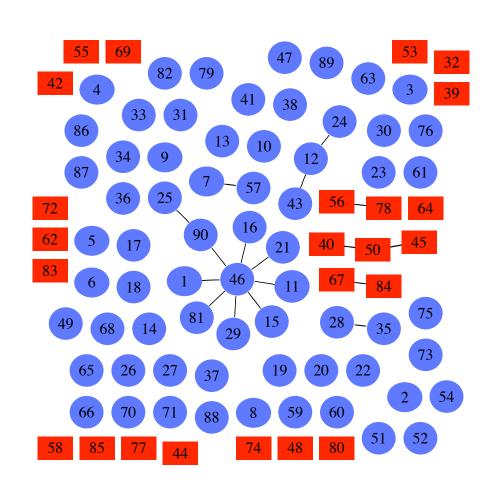


proximity inference rule

- proximities are time-stamped (i, j, t)
- we want to infer durations $(i,j,t_s,\Delta t)$
- proximities are noisy [some edges unobserved]
- high-resolution temporal sampling [every 5 mins]
- rule:
 - define tolerance τ ; if gap less than τ , assume continuous proximity

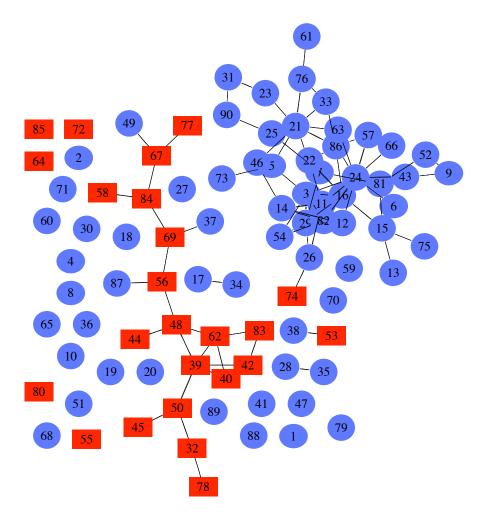
Tuesday, 19 Oct 2004





very few connections

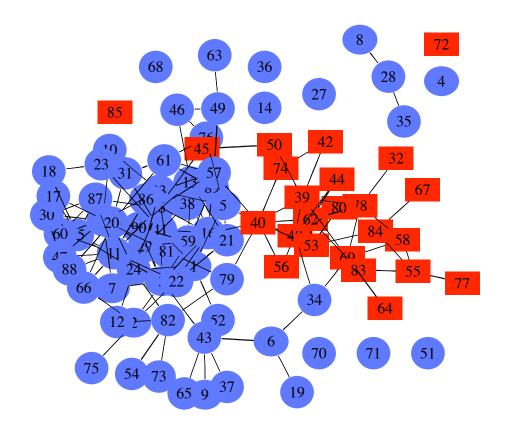
Tuesday, 19 Oct 2004



more connections

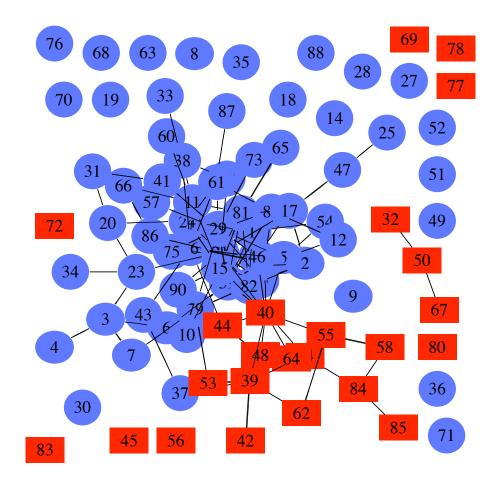
Tuesday, 19 Oct 2004





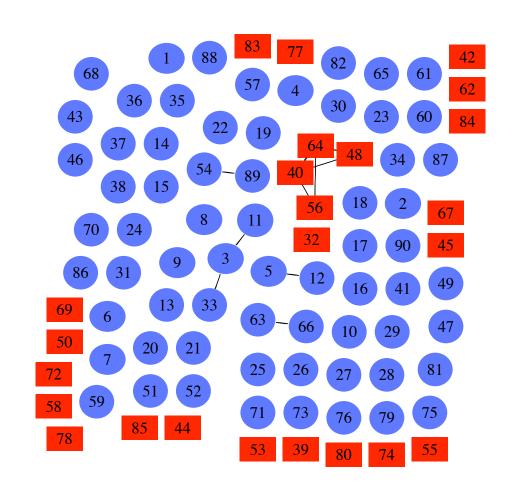
peak connections, two communities

Tuesday, 19 Oct 2004



fewer connections

Tuesday, 19 Oct 2004



very few connections

timing is everything?

- how long do edges last?
- how does structure vary over time?
- how stable is a local neighborhood?
- how does discrete time impact measures?

edge persistence

how long do edges last?

measure durations $\Pr(\Delta t)$

edge persistence

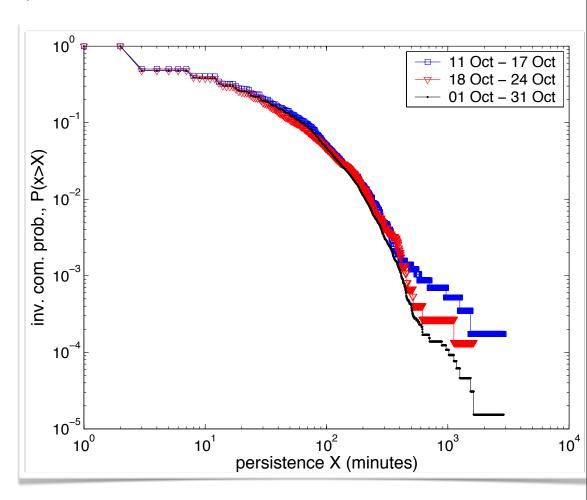
how long do edges last?

measure durations $\Pr(\Delta t)$

- month of October
- broad distribution

$$\langle \Delta t \rangle = 22.8$$
 minutes

- changes at many time scales
- consistent up to $\Delta t < 400 \ \mathrm{minutes}$



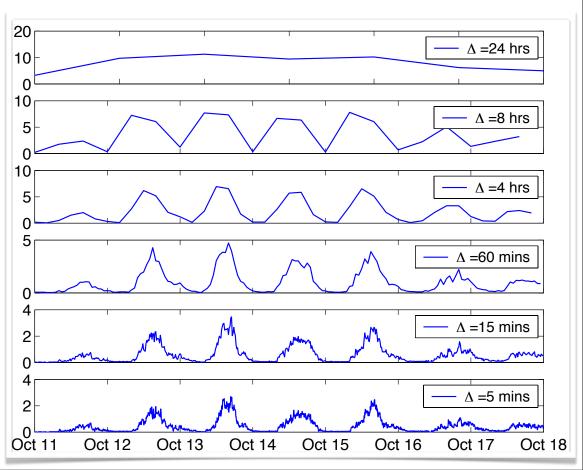
how does structure vary over time?

vary aggregation window for snapshots compute **mean degree** over time

how does structure vary over time?

vary aggregation window for snapshots compute **mean degree** over time

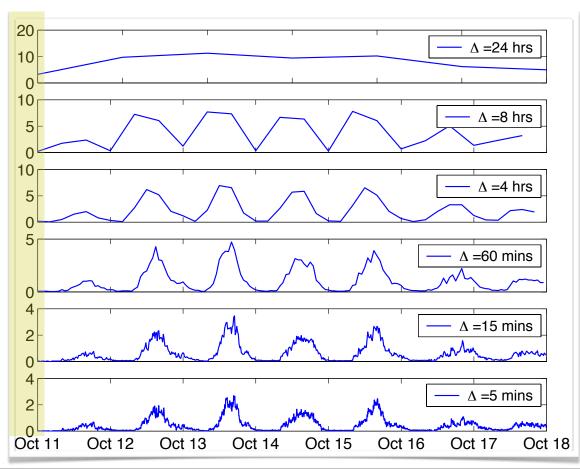
- one week of October
- highly periodic
- aggregation time matters



how does structure vary over time?

vary aggregation window for snapshots compute **mean degree** over time

- one week of October
- highly periodic
- aggregation time matters



how stable are local neighborhoods?

vary aggregation window for snapshots compute **adjacency correlation** over time

$$\gamma_j = \frac{\sum_{i \in N(j)} A_{ij}^{(x)} A_{ij}^{(y)}}{\sqrt{\sum_{i \in N(j)} A_{ij}^{(x)} \sum_{i \in N(j)} A_{ij}^{(y)}}}$$

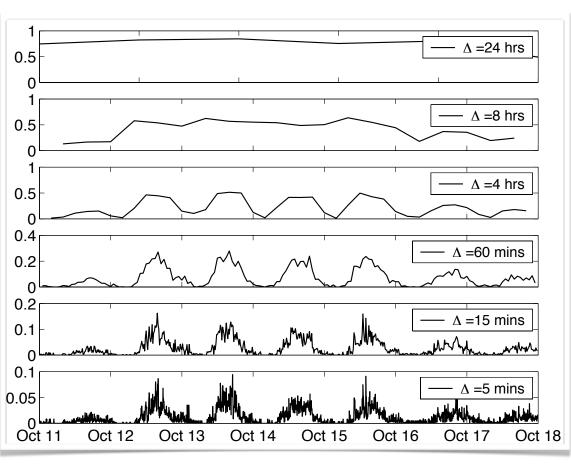
for two adjacency matrices $A^{(x)}$, $A^{(y)}$ measures similarity among neighbors observed in either network

average overlap = mean value $\langle \gamma \rangle$

how stable are local neighborhoods?

vary aggregation window for snapshots compute **adjacency correlation** over time

- one week of October
- highly consistent neighborhoods
- daily / weekly periodicity
- aggregation time matters



how does discrete time impact measures?

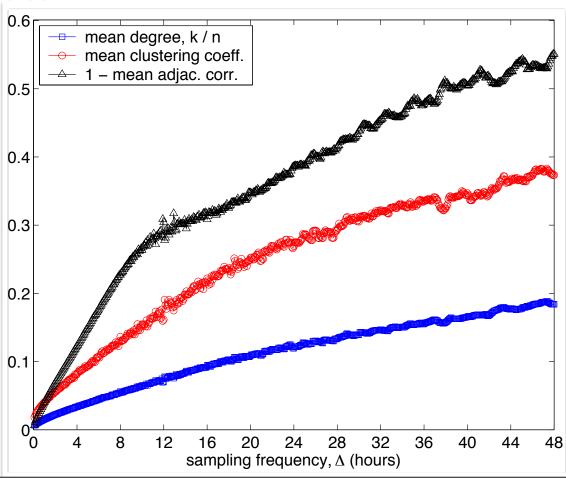
vary aggregation window for snapshots compute **summary statistics**

how does discrete time impact measures?

vary aggregation window for snapshots

compute summary statistics

- all statistics depend on aggregation duration
- choose a time scale = choose a statistical value



how to choose aggregation time?

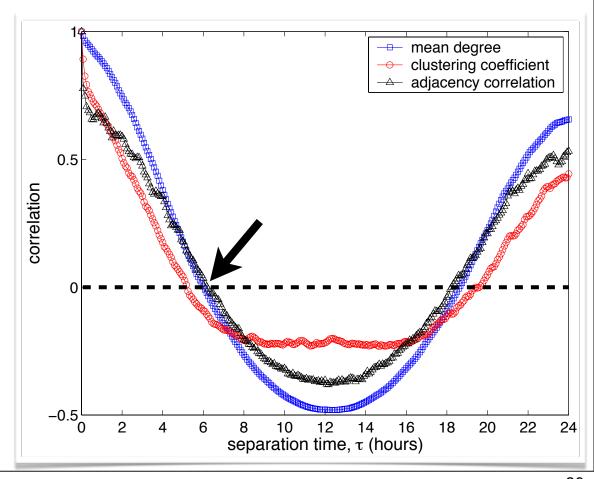
recall highly periodic dynamics

compute autocorrelation function on network measures

how to choose aggregation time?

recall highly periodic dynamics

compute autocorrelation function on network measures



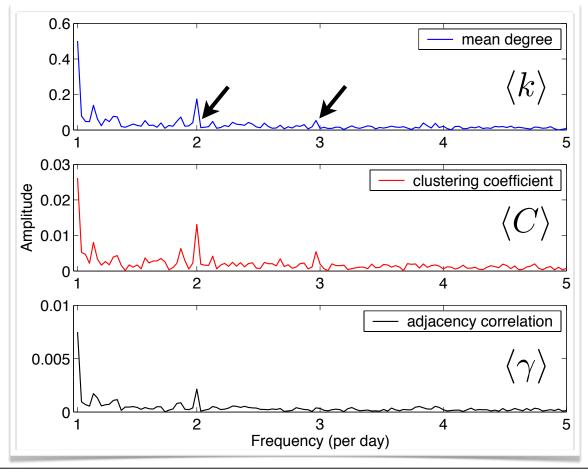
how to choose aggregation time?

recall highly periodic dynamics use frequency spectrum to choose sampling rate

- periodicity at 1,2,3 samples per day
- Nyquist rate

$$\Delta_{
m nat} \simeq 4$$
 hours

degree
$$\langle k \rangle_{\rm nat}=2.24$$
 triangles $\langle C \rangle_{\rm nat}=0.084$ adj. corr. $\langle \gamma \rangle_{\rm nat}=0.88$



other ideas

- temporal "reachability" and continuous-time methods
- different parts evolving at different rates
- generative models?
- densification dynamics?
- temporal anomalies
- etc.